18,019 research outputs found

    Comment on "High Field Studies of Superconducting Fluctuations in High-Tc Cuprates. Evidence for a Small Gap distinct from the Large Pseudogap"

    Full text link
    By using high magnetic field data to estimate the background conductivity, Rullier-Albenque and coworkers have recently published [Phys.Rev.B 84, 014522 (2011)] experimental evidence that the in-plane paraconductivity in cuprates is almost independent of doping. In this Comment we also show that, in contrast with their claims, these useful data may be explained at a quantitative level in terms of the Gaussian-Ginzburg-Landau approach for layered superconductors, extended by Carballeira and coworkers to high reduced-temperatures by introducing a total-energy cutoff [Phys.Rev.B 63, 144515 (2001)]. When combined, these two conclusions further suggest that the paraconductivity in cuprates is conventional, i.e., associated with fluctuating superconducting pairs above the mean-field critical temperature.Comment: 9 pages, 1 figur

    On the energy saved by interlayer interactions in the superconducting state of cuprates

    Full text link
    A Ginzburg-Landau-like functional is proposed reproducing the main low-energy features of various possible high-Tc superconducting mechanisms involving energy savings due to interlayer interactions. The functional may be used to relate these savings to experimental quantities. Two examples are given, involving the mean-field specific heat jump at Tc and the superconducting fluctuations above Tc. Comparison with existing data suggests, e.g., that the increase of Tc due to the so-called interlayer tunneling (ILT) mechanism of interlayer kinetic-energy savings is negligible in optimally-doped Bi-2212.Comment: 12 pages, no figures. Version history: 21-aug-2003, first version (available on http://arxiv.org/abs/cond-mat/0308423v1); 15-jan-2004, update to match Europhys. Lett. publication (minor grammar changes, updates in bibliography - e.g., refs. 5 and 26

    Pairing of Cooper Pairs in a Fully Frustrated Josephson Junction Chain

    Full text link
    We study a one-dimensional Josephson junction chain embedded in a magnetic field. We show that when the magnetic flux per elementary loop equals half the superconducting flux quantum Ď•0=h/2e\phi_0=h/2e, a local \nbZ_2 symmetry arises. This symmetry is responsible for a nematic Luttinger liquid state associated to bound states of Cooper pairs. We analyze the phase diagram and we discuss some experimental possibilities to observe this exotic phase.Comment: 4 pages, 4 EPS figure

    Entanglement entropy in collective models

    Full text link
    We discuss the behavior of the entanglement entropy of the ground state in various collective systems. Results for general quadratic two-mode boson models are given, yielding the relation between quantum phase transitions of the system (signaled by a divergence of the entanglement entropy) and the excitation energies. Such systems naturally arise when expanding collective spin Hamiltonians at leading order via the Holstein-Primakoff mapping. In a second step, we analyze several such models (the Dicke model, the two-level BCS model, the Lieb-Mattis model and the Lipkin-Meshkov-Glick model) and investigate the properties of the entanglement entropy in the whole parameter range. We show that when the system contains gapless excitations the entanglement entropy of the ground state diverges with increasing system size. We derive and classify the scaling behaviors that can be met.Comment: 11 pages, 7 figure

    VLBI observations of SN2011dh: imaging of the youngest radio supernova

    Full text link
    We report on the VLBI detection of supernova SN2011dh at 22GHz using a subset of the EVN array. The observations took place 14 days after the discovery of the supernova, thus resulting in a VLBI image of the youngest radio-loud supernova ever. We provide revised coordinates for the supernova with milli-arcsecond precision, linked to the ICRF. The recovered flux density is a factor 2 below the EVLA flux density reported by other authors at the same frequency and epoch of our observations. This discrepancy could be due to extended emission detected with the EVLA or to calibration problems in the VLBI and/or EVLA observations.Comment: Letter. Accepted in A&

    Variational quantum Monte Carlo simulations with tensor-network states

    Get PDF
    We show that the formalism of tensor-network states, such as the matrix product states (MPS), can be used as a basis for variational quantum Monte Carlo simulations. Using a stochastic optimization method, we demonstrate the potential of this approach by explicit MPS calculations for the transverse Ising chain with up to N=256 spins at criticality, using periodic boundary conditions and D*D matrices with D up to 48. The computational cost of our scheme formally scales as ND^3, whereas standard MPS approaches and the related density matrix renromalization group method scale as ND^5 and ND^6, respectively, for periodic systems.Comment: 4+ pages, 2 figures. v2: improved data, comparisons with exact results, to appear in Phys Rev Let

    Three qubits can be entangled in two inequivalent ways

    Get PDF
    Invertible local transformations of a multipartite system are used to define equivalence classes in the set of entangled states. This classification concerns the entanglement properties of a single copy of the state. Accordingly, we say that two states have the same kind of entanglement if both of them can be obtained from the other by means of local operations and classical communcication (LOCC) with nonzero probability. When applied to pure states of a three-qubit system, this approach reveals the existence of two inequivalent kinds of genuine tripartite entanglement, for which the GHZ state and a W state appear as remarkable representatives. In particular, we show that the W state retains maximally bipartite entanglement when any one of the three qubits is traced out. We generalize our results both to the case of higher dimensional subsystems and also to more than three subsystems, for all of which we show that, typically, two randomly chosen pure states cannot be converted into each other by means of LOCC, not even with a small probability of success.Comment: 12 pages, 1 figure; replaced with revised version; terminology adapted to earlier work; reference added; results unchange

    Effects of critical temperature inhomogeneities on the voltage-current characteristics of a planar superconductor near the Berezinskii-Kosterlitz-Thouless transition

    Full text link
    We analyze numerically how the voltage-current (V-I) characteristics near the so-called Berezinskii-Kosterlitz-Thouless (BKT) transition of 2D superconductors are affected by a random spatial Gaussian distribution of critical temperature inhomogeneities with long characteristic lengths (much larger than the in-plane superconducting coherence length amplitude). Our simulations allow to quantify the broadening around the average BKT transition temperature of both the exponent alpha in V I^alpha and of the resistance V/I. These calculations reveal that strong spatial redistributions of the local current will occur around the transition as either I or the temperature T are varied. Our results also support that the condition alpha=3 provides a good estimate for the location of the average BKT transition temperature, and that extrapolating to alpha->1 the alpha(T) behaviour well below the transition provides a good estimate for the average mean-field critical temperature.Comment: 18 pages; pdfLaTeX; 1 TeX file + 8 PDF files for figures (figs.1,2,3a,3b,4,5a,5b,6

    Scaling of the von Neumann entropy across a finite temperature phase transition

    Full text link
    The spectrum of the reduced density matrix and the temperature dependence of the von Neumann entropy (VNE) are analytically obtained for a system of hard core bosons on a complete graph which exhibits a phase transition to a Bose-Einstein condensate at T=TcT=T_c. It is demonstrated that the VNE undergoes a crossover from purely logarithmic at T=0 to purely linear in block size nn behaviour for T≥TcT\geq T_{c}. For intermediate temperatures, VNE is a sum of two contributions which are identified as the classical (Gibbs) and the quantum (due to entanglement) parts of the von Neumann entropy.Comment: 4 pages, 2 figure

    Topònims de l'Atzúbia

    Get PDF
    • …
    corecore